Dynamics of electrochemical oscillators with electrode size disparity: asymmetrical coupling and anomalous phase synchronization.
نویسندگان
چکیده
Experiments are carried out in dual electrode oscillatory Ni electrodissolution in which the two electrodes have different surface areas. The transition to phase synchronization is analyzed as asymmetrical coupling strength, induced by placing a cross resistance between the electrodes, is varied. It is shown that because of nonisochronicity (phase shear, i.e., strong dependence of period on amplitude) of the oscillators, anomalous phase synchronization effects can be observed: advanced/delayed synchronization and, to a lesser extent, frequency difference enhancement. The type of synchronization is strongly affected by the underlying heterogeneities of the oscillators; in the experiments with a slow driver (large surface area) electrode the synchronization is advanced, with a fast driver electrode the synchronization is delayed with respect to symmetrical coupling. The findings thus reveal that the interplay of asymmetrical coupling with the types of inherent heterogeneities plays an important role for the interpretation of size effects in the dynamical behavior of a nonlinear chemical reaction.
منابع مشابه
Synchronization of electrochemical oscillators with differential coupling.
Experiments are presented to describe the effect of capacitive coupling of two electrochemical oscillators during Ni dissolution in sulfuric acid solution. Equivalent circuit analysis shows that the coupling between the oscillators occurs through the difference between the differentials of the electrode potentials. The differential nature of the coupling introduces strong negative nonisochronic...
متن کاملPhase synchronization of three locally coupled chaotic electrochemical oscillators: enhanced phase diffusion and identification of indirect coupling.
Experiments are carried out with three locally coupled phase coherent chaotic electrochemical oscillators (A-B-C) in nickel dissolution in sulfuric acid. As the interaction strength is increased among the electrodes, an onset of synchronization is observed where the frequencies become identical and the phase differences are bounded. The precision of the period of the oscillators is characterize...
متن کاملCollective dynamics of chaotic chemical oscillators and the law of large numbers.
Experiments on the nontrivial collective dynamics and phase synchronization of populations of nonidentical chaotic electrochemical oscillators are presented. Without added coupling no deviation from the law of large numbers is observed. Deviations do arise with weak global or short-range coupling; large, irregular, and periodic mean field oscillations occur along with (partial) phase synchroniz...
متن کاملDecoding Network Structure in On-Chip Integrated Flow Cells with Synchronization of Electrochemical Oscillators
The analysis of network interactions among dynamical units and the impact of the coupling on self-organized structures is a challenging task with implications in many biological and engineered systems. We explore the coupling topology that arises through the potential drops in a flow channel in a lab-on-chip device that accommodates chemical reactions on electrode arrays. The networks are revea...
متن کاملDelay-induced multistable synchronization of biological oscillators
We analyze the dynamics of pulse coupled oscillators depending on strength and delay of the interaction. For two oscillators, we derive return maps for subsequent phase differences, and construct phase diagrams for a broad range of parameters. In-phase synchronization proves stable for inhibitory coupling and unstable for excitatory coupling if the delay is not zero. If the coupling strength is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 13 34 شماره
صفحات -
تاریخ انتشار 2011